A Simplified Decoding Method for a Robust Distant-talking Asr Concept Based on Feature-domain Dereverberation
نویسندگان
چکیده
A simplified decoding method for the concept of REverberation MOdeling for Speech recognition (REMOS) [1] is proposed. In order to achieve robust distant-talking Automatic Speech Recognition (ASR), the REMOS concept uses a combination of clean-speech HMMs and a reverberation model to perform feature-domain dereverberation during decoding. The simplified decoding/dereverberation method proposed in this contribution significantly reduces the computational complexity of the concept without a major performance reduction.
منابع مشابه
Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification
Deep neural network (DNN)-based approaches have been shown to be effective in many automatic speech recognition systems. However, few works have focused on DNNs for distant-talking speaker recognition. In this study, a bottleneck feature derived from a DNN and a cepstral domain denoising autoencoder (DAE)-based dereverberation are presented for distant-talking speaker identification, and a comb...
متن کاملSpeech Recognition by Dereverberation Method Based on Multi-channel LMS Algorithm in Noisy Reverberant Environment
1 Introduction In a distant-talking environment, channel distortion drastically degrades speech recognition performance because of mismatches between the training and test environments. The current approaches focusing on robustness issues for automatic speech recognition (ASR) in noisy reverberant environments can be classified as speech enhancement, robust feature extraction, or model adaptati...
متن کاملDereverberation Based on Spectral Subtraction by Multi-Channel LMS Algorithm for Hands-Free Speech Recognition
In a distant-talking environment, channel distortion drastically degrades speech recognition performance because of a mismatch between the training and testing environments. The current approach focusing on automatic speech recognition (ASR) robustness to reverberation and noise can be classified as speech signal processing [1, 4, 5, 14], robust feature extraction [10, 20], and model adaptation...
متن کاملMulti-step linear prediction based speech dereverberation in noisy reverberant environment
A speech signal captured by a distant microphone is generally contaminated by reverberation and background noise, which severely degrade the automatic speech recognition (ASR) performance. In this paper, we first extend a previously proposed single channel dereverberation algorithm to a multi-channel scenario. The method estimates late reflections using multichannel multi-step linear prediction...
متن کاملDistant-Talking Speech Recognition Based on Spectral Subtraction by Multi-Channel LMS Algorithm
We propose a blind dereverberation method based on spectral subtraction using a multi-channel least mean squares (MCLMS) algorithm for distant-talking speech recognition. In a distant-talking environment, the channel impulse response is longer than the short-term spectral analysis window. By treating the late reverberation as additive noise, a noise reduction technique based on spectral subtrac...
متن کامل